

AP Physics 1 - Test 02 - 1D Constant Acceleration

Score:

 1. The position of an object is given as a function of time by x=7t-3t², where x is in meters and t is in seconds. Its average velocity over the interval from t=0 to t=4 is: A 5 m/s B -5 m/s C 11 m/s D -11 m/s E -14.5 m/s
 Of the following situations, which one is impossible? A body having velocity east and acceleration east. A body having velocity east and acceleration west. A body having zero velocity and non-zero acceleration. A body having constant acceleration and a changing velocity. A body having constant velocity and a changing acceleration.
 3. A car, initially at rest, travels 20m in 4s along a straight line with constant acceleration. The acceleration of the car is: A 0.4 m/s² B 1.3 m/s² C 2.5 m/s² D 4.9 m/s² E 9.8 m/s²
 4. A racing car traveling with constant acceleration increases its speed from 10m/s to 50m/s over a distance of 60m. How long does this take? A 2.0 s B 4.0 s C 5.0 s D 8.0 s E 10.0 s
5. A car starts from rest and goes down a slope with a constant acceleration of 5.0 m/s ² . After 5 s the car reaches the bottome of the hill. Its speed at the bottom of the hill is:

C	25 m/s	
	50 m/s	
E	160 m/s	
_	A company to a contract of the	
6. of 3	A car moving with an initial velocity of 25 m/s north has a co m/s ² south. After 6 seconds, its velocity will be:	nstant acceleration
A	7 m/s north	
B	7 m/s south	
(c)	43 m/s north	
	20 m/s north	
E	20 m/s south	
7	The diagram of the size of the time of the form of the size of	
7. poi	The diagram shows a velocity-time graph for a car moving in nt Q, the car must be:	i a straight line. At
A	moving with a zero acceleration ${\it v}$	P
B	traveling downhill	
(c)	traveling below ground level	
	reducing speed	QQ
E	traveling in the reverse direction to that at point P	
8. poi	The diagram shows a velocity-time graph for a car moving in nt P the car must be:	a straight line. At
A	moving with zero acceleration $^{\it v}$	
B	climbing a hill	P
(c)	accelerating	
	stationary	- t
E	traveling backwards	
9. pos	A cart accelerates toward the origin as indicated on the diagition vs. time and velocity vs. time graphs look like?	ram. What would the
A	A	<i>x</i>
B	В	0

10. A cart *slows down* while moving away from the origin. What do the velocity and acceleration graphs look like?

11. Question 11

- (A) A
- B E
- (c) C
- (E) E

12. A car moves along a straight stretch of road. The following graph shows the car's position as a function of time:

At what point(s) is the displacement zero?

- (A) A
- (B) B
- (C) (C
- (E) E

13. A car moves along a straight stretch of road. The following graph shows the car's position as a function of time:

At what point(s) is the speed zero?

- \bigcirc B B
- $\overline{(c)}$ C
- (E) E
- F B & E

14. A car moves along a straight stretch of road. The following graph shows the car's position as a function of time:

At what point(s) is the speed increasing?

- \bigcirc A
- B B
- (c) C
- (E) E
- (F) C & D

15. A car moves along a straight stretch of road. The following graph shows the car's position as a function of time:

At what point(s) is the speed decreasing?

- (A) A
- B E
- (c) (
- (E) E

- 16. The area of a velocity vs. time graph respresents:
- (A) Acceleration
- (B) Displacement
- C Average velocity
- (D) Instantaneous velocity
- (E) None of the above
- 17. The <u>slope</u> of a *velocity vs. time* graph represents:
- (A) Acceleration
- (B) Displacement
- (c) Average velocity
- D Instantaneous velocity
- (E) None of the above
- 18. The <u>slope</u> of an *acceleration vs. time* graph respresents:
- (A) Acceleration
- B Displacement
- C Average velocity

D	Instantaneous velocity
E	None of the above
10	The aver of an escalaration us time such various anter
19.	The <u>area</u> of an <i>acceleration vs. time</i> graph represents:
A	Acceleration
В	Displacement
	Instantaneous velocity
	Change in velocity
(E)	None of the above
20.	When <u>must</u> an object "Slow Down"?
(A)	When acceleration and velocity point in opposite directions
(B)	When acceleration is negative
\overline{C}	When acceleration and velocity point in the same direction
	When velocity is negative
E	When velocity and acceleration are both constant
21. spe	The following graph is a position vs time graph. At which instance of time is the ed the greatest?
A	A
B	B x E
\overline{C}	C
	D A B
	E E
22.	The following graph is a position vs. time graph. The velocity at instant 1 is while the velocity at instant 2 is
$\overline{\mathbb{A}}$	positive, negative
B	positive, negative x
	negative, negative
	<u>2</u> t
	negative, positive
	positive, zero
23. dec	A car is traveling at v _e =36 m/s. The driver applies the brakes and the car elerates at 6.0 m/s ² . What is the stopping distance?
A	4.0 m
\bigcirc	130 m
$(\ \ \)$	120 m

D 110 m
24. Car A can go from 0 to 60mph in 16s.
Car B is capable of maintaining twice the acceleration of that of Car A, even ar higher speeds. How much time would be required for Car B to go from 0 to120mph?
A 4.0 s
B 12 s
C 16 s
D 8.0 s
25. Chameleons catch insects with their tongues, which they can rapidly extend to great lengths. In a typical strike, the chameleon's tongue accelerates at a remarkable 260 m/s² for 20ms, then travels at a constand velocity for another 30ms.
During the total time of 50ms, how far does the tongue reach?
A 0.208 m (20.8 cm)
B 1.23 m (123 cm)
C 0.052 (5.2 cm)
D 2.53 m (253 cm)
E 0.156 m (15.6 cm)
26. Suppose a racer must finish a race with an average velocity of 150 km/h. If he starts with a velocity of 100 km/h and assuming constant acceleration, what velocity must he finish the race with?
A 150 km/h
B 100 km/h
C 200 km/h
D 273 km/h
E 50 km/h
27. An object slides down a ramp. Which of the following statements are true?
A Speed increases
B Acceleration increases
C Both Speed and Acceleration Increases
D None of the above
28. Suppose you take a trip that covers 180 km and takes 3 hours to make. Your average velocity it
A 30 km/h
B 60 km/h
C 180 km/h

	360 km/h
E	540 km/h
29. doe	A car accelerates at 2 m/s ² . Assuming the car starts from rest, how much time s it need to accelerate to a velocity of 20 m/s?
A	2 seconds
\bigcirc	10 seconds
	20 seconds
	40 seconds
	none of the above
30. m/s	Suppose an object has an initial velocity of 40 m/s and has an acceleration of -10 . How long will it take the object to return to its original position?
A	4 seconds
\bigcirc B	8 seconds
\bigcirc	10 seconds
$\bigcirc \hspace{-0.5em} \mathbb{D}$	400 seconds
\bigcirc	It will never return to its original position
24	A constant account the circumstate of the state of
31.	A vector quantity is a quantity that has
	magnitude and time time and direction
B	
(c)	magnitude and direction
32.	Acceleration is defined by a CHANGE in
\bigcirc A	time it takes to move from one place to another place
$\overline{\mathbb{B}}$	velocity of an object
\overline{C}	distance divided by the time interval
	velocity divided by the time interval
E	time it takes to move from one speed to another speed
33.	When you look at the speedometer in a moving car, you can see the car's
A	average distance traveled
\bigcirc B	instantaneous acceleration
\bigcirc	average speed
$\bigcirc \hspace{-0.5em} \mathbb{D}$	instantaneous speed
$\overline{\mathbb{E}}$	average acceleration

34. spec	Challenge Question: Suppose you are in a car that is going around a curve. The edometer reads a constant 30 mph. Which of the following is NOT true.
\bigcirc A	You and the car are accelerating
B	Your acceleration is constantly changing
\bigcirc	Your velocity is constant
	Your direction is constantly changing
E	Your speed is constant
35. inst	It is possible to have a positive acceleration and a negative velocity at the same ant.
\bigcirc A	True
B	False
36.	If an objects velocity is zero, then its acceleration must also be zero.
\bigcirc A	True
\bigcirc B	False